Search results for "spike trains"
showing 3 items of 3 documents
Burst analysis tool for developing neuronal networks exhibiting highly varying action potential dynamics
2012
In this paper we propose a firing statistics based neuronal network burst detection algorithm for neuronal networks exhibiting highly variable action potential dynamics. Electrical activity of neuronal networks is generally analyzed by the occurrences of spikes and bursts both in time and space. Commonly accepted analysis tools employ burst detection algorithms based on predefined criteria. However, maturing neuronal networks, such as those originating from human embryonic stem cells (hESC), exhibit highly variable network structure and time-varying dynamics. To explore the developing burst/spike activities of such networks, we propose a burst detection algorithm which utilizes the firing s…
Information – theoretic characterization of concurrent activity of neural spike trains
2021
The analysis of massively parallel spike train recordings facilitates investigation of communications and synchronization in neural networks. In this work we develop and evaluate a measure of concurrent neural activity, which is based on intrinsic firing properties of the recorded neural units. An overall single neuron activity is unfolded in time and decomposed into working and non-firing state, providing a coarse, binary representation of the neurons functional state. We propose a modified measure of mutual information to reflect the degree of simultaneous activation and concurrency in neural firing patterns. The measure is shown to be sensitive to both correlations and anti-correlations,…
Burst analysis tool for developing neuronal networks exhibiting highly varying action potential dynamics
2012
In this paper we propose a firing statistics based neuronal network burst detection algorithm for neuronal networks exhibiting highly variable action potential dynamics. Electrical activity of neuronal networks is generally analyzed by the occurrences of spikes and bursts both in time and space. Commonly accepted analysis tools employ burst detection algorithms based on predefined criteria. However, maturing neuronal networks, such as those originating from human embryonic stem cells (hESCs), exhibit highly variable network structure and time-varying dynamics. To explore the developing burst/spike activities of such networks, we propose a burst detection algorithm which utilizes the firing …